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Let f (z)=a0,0(z)+a1 ,1(z)+ } } } +an,n(z) be a polynomial of degree n, given as
an orthogonal expansion with real coefficients. We study the location of the zeros
of f relative to an interval and in terms of some of the coefficients. Our main
theorem generalizes or refines results due to Tura� n and Specht. In particular, it
includes a best possible criterion for the occurrence of real zeros. Our approach also
allows us to establish a weighted L2 inequality giving a lower estimate for the
product of two polynomials. � 2001 Academic Press
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1. INTRODUCTION AND STATEMENT OF RESULTS

Tura� n [17] proposed to study the zeros of a polynomial f in terms of the
coefficients a0 , a1 , ..., an of an orthogonal expansion

f (z)=a0 ,0(z)+a1,1(z)+ } } } +an,n(z).

He himself [17�19] obtained various results for the Hermite expansion
with

,&(z)=H&(z) :=(&1)& ez2 d&

dz& (e&z2
) (& # N0). (1)

Similar results for general orthogonal expansions were obtained by Specht
[12�15] and subsequently by numerous other authors; for further references
see [9].

For basic facts about orthogonal polynomials, we refer to [3, 5, 16].
Throughout this paper, we shall use the following notations. By _, we denote
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an m-distribution, that is, a non-decreasing bounded function _: R � R
which attains infinitely many distinct values and is such that the moments

+n :=|
�

&�
xn d_(x) (n # N0)

exist. Then there exists a uniquely determined sequence of polynomials

,0(z), ,1(z), ..., ,n(z), ..., (2)

called the sequence of monic orthogonal polynomials with respect to d_(x),
with the following properties:

(i) each ,& (& # N0) is a monic polynomial of degree &;

(ii) ��
&� ,n(x) ,m(x) d_(x)=0 for n{m.

For an arbitrary polynomial f, we write

& f & :=\|
�

&�
| f (x)|2 d_(x)+

1�2

(3)

and introduce the numbers

#n :=&,n &2 (n # N0). (4)

The zeros of ,n are known to be real. By Jn , we denote the smallest interval
containing the zeros of ,n and define a distance function dn by

dn(z) :=min[ |z&`| : ` # Jn] (z # C). (5)

Since the zeros of consecutive orthogonal polynomials interlace, we have

d1(z)�d2(z) } } } �dn(z)� } } } �|Jz|.

A typical result, which may be attributed to Specht (see Giroux [4] who
proves a refinement), is as follows.

Theorem A. Let

f (z)=a0 ,0(z)+a1,1(z)+ } } } +an,n(z)

be a polynomial of degree n, given as an orthogonal expansion with complex
coefficients. Then, in the above notations, each zero ` of f satisfies the
inequality

dn(`)�� :
n&1

&=0

#&

#n&1 }
a&

an }
2

. (6)
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It is desirable to have additional and refined results for polynomials
which are real-valued on the real line. In the following, the numbers

Cn, k :=
1
#k

max[&�k&2 : �k a monic divisor of ,n with deg �k=k] (7)

will be of significance.
Let !1 , ..., !n denote the zeros of ,n . It can be shown by calculating

&�n&1&2 with the help of the Gaussian quadrature formula with nodes
!1 , ..., !n that

Cn, n&1= max
1�&�n

,$n(!&)
,n&1(!&)

.

In the case that d_(x) has bounded support, a simple upper bound for Cn, k

was mentioned in [10]. In [9], we presented the following theorem.

Theorem B. Let

f (z)=a0 ,0(z)+a1,1(z)+ } } } +an,n(z) (8)

be a polynomial of degree n, given as an orthogonal expansion with real coef-
ficients. Then in the above notations, each zero ` of f satisfies the inequality

|J`|�\� :
n&2

&=0

#&

#n&2 }
a&

an }
2

&
#n&1

#n&2 - Cn&1, n&2
+

1�2

(9)

provided that the term in parentheses is non-negative, else f has n distinct real
zeros which separate those of ,n&1 .

The criterion for real zeros contained in Theorem B is best possible in
the sense that Cn&1, n&2 cannot be replaced by a smaller number (see
Theorem 1 below).

Theorem B includes a quantitative version of the fact [16, Theorem 3.3.4]
that an orthogonal binomial

an&1,n&1(z)+an,n(z)

with real coefficients which do not both vanish has simple real zeros, and
thus, if the coefficients of the polynomial (8) are real and a0 , ..., an&2 are of
sufficiently small modulus, then f has also simple real zeros. Note that the
coefficient an&1 does not appear on the right-hand side of (9). Another
result involving only some of the coefficients was proved in [10, Theorem 1].
Following a common convention, we denote by wxx the largest integer not
exceeding x.
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Theorem C. Let

f (z)=a0 ,0(z)+a1,1(z)+ } } } +an,n(z) (10)

be a polynomial given as an orthogonal expansion with real coefficients. Let
k be an integer with 0�k�n, and set m :=w(n+k+2)�2x . If, in terms of
the numbers (4) and (7),

:
k&1

j=0

#ja2
j <

#k

Cm, k&1
a2

k ,

then f has at least k distinct real zeros of odd multiplicities, lying in the
smallest interval spanned by the zeros of ,m .

In Section 2, we shall show that in Theorem C the constant Cm, k cannot
be replaced by a smaller number (see the remark following the proof of
Lemma 3).

Theorem C includes a quantitative version of the fact [1, 8] that a
polynomial

ak ,k(z)+ak+1 ,k+1(z)+ } } } +an ,n(z) (ak {0)

with real coefficients ak , ..., an has at least k distinct real zeros odd multi-
plicities, and thus, if the polynomial (10) has real coefficients and a0 , ..., ak&1

are of relatively small modulus as compared to |ak |, then f has also at least k
distinct real zeros of odd multiplicities. Moreover, there may be seen a rela-
tionship to results of van Vleck [20], Montel [7], and Ballieu [2], who
showed for a polynomial f (z)=�n

&=0 b&z& that the coefficients b0 , ..., bk&1

along with one further coefficient bm {0 (1�k�m�n) allow to construct a
bound for k of the zeros of f. Theorem C would correspond to the case that
m=k.

Our main result is an analogue for an orthogonal expansion in the case
that m=n. It will generalize and refine Theorem B. Let us first introduce
the functions

1

- C+, &
\x&

#+

#& - C+, &
+ if 0�x<

2#+

#& - C+, &

K+, & : x [{ #&

4#+
x2 if

2#+

#& - C+, &

�x<
2#+

#&
(11)

x&
#+

#&
if x�

2#+

#&
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FIG. 1. The graph of the function K+, & , a quadratic majorant as a dotted curve, and a
linear majorant for positive K+, &(x) as a dashed line.

(+, & # N0 , +�&), which are easily seen to be monotonically increasing and
continuously differentiable (cf. Fig. 1).

Theorem 1. Let

f (z)=a0 ,0(z)+a1,1(z)+ } } } +an,n(z)

be a polynomial of degree n�2, given as an orthogonal expansion with real
coefficients. Let k be an integer such that 2�k�n and n&k is even, and set
m :=(n+k)�2&1. If, in terms of the numbers (4) and (7),

:
k&2

&=0

#&a2
&<

#2
m

#k&2Cm, k&2

a2
n , (12)

then f has at least k distinct real zeros of odd multiplicities, else f has at most
(n&k)�2 pairs of conjugate zeros in the region

{z # C : dm(z)>_Km, k&2 \� :
k&2

&=0

#&

#k&2 }
a&

an }
2

+&
1�(n&k+2)

=
with the function Km, k&2 given by (11). In (12) the constant Cm, k&2 cannot
be replaced by a smaller number.
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Since the function K+, & is defined piecewise, one may like to replace it by
a linear or a quadratic majorant. It is geometrically evident (cf. Fig. 1) that

K+, &(x)�x&
#+

#& - C+, &

for x�
#+

#& - C+, &

.

This allows us to deduce from Theorem 1 the following simpler statement
with a somewhat weaker conclusion.

Corollary 1. In the situation of Theorem 1, the polynomial f has at
least k zeros in the strip

{z # C : |Jz|�\� :
k&2

&=0

#&

#k&2 }
a&

an }
2

&
#m

#k&2 - Cm, k&2
+

1�(n&k+2)

=
provided that the term in parentheses is non-negative, else f has at least k
distinct real zeros of odd multiplicities.

For k=n, Corollary 1 reduces essentially to Theorem B. The missing
separation property is obtained by a continuity argument.

If a bound for Cm, k&2 is not available, then we may replace in Corollary 1
the whole fraction containing Cm, k&2 by zero. We still obtain a non-trivial
result, which may be attributed to Specht who proved it by a different
method in an unpublished manuscript.

Tura� n established a sufficient condition for an Hermite expansion to
have only real zeros. Denoting by Hn* the n th monic Hermite polynomial,
we have for that orthogonal system

Hn*(z)=2&nHn(z), #n=
n !
2n , Cn, n&1=n (n # N). (13)

Now Corollary 1 with k=n implies the following criterion, which is exactly
that of Tura� n [19, Theorem III].

Corollary 2. If the Hermite expansion

f (z)= :
n

&=0

b&H&(z)

of a polynomial f has real coefficients satisfying

:
n&2

&=0

2&& ! b2
&<2n(n&1)! b2

n ,

then f has n distinct real zeros.
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The criteria for real zeros contained in Corollaries 1 and 2 are again
sharp.

Let us now consider a quadratic majorant for K+, & . From the definition
in (11), it is geometrically evident (cf. Fig. 1) that

K+, &(x)�
#&

4#+
x2 for x�0.

This allows us to deduce from Theorem 1 the following simpler but some-
what weaker statement.

Corollary 3. In the situation of Theorem 1, the polynomial f has at
least k zeros in the strip

{z # C : |Jz|�\1
4

:
k&2

&=0

#&

#m } a&

an }
2

+
1�(n&k+2)

= .

For k=n, Corollary 3 shows that the moduli of the imaginary parts of
the zeros of f are bounded by

1
2 � :

n&2

&=0

#&

#n&1 }
a&

an }
2

(14)

(also see [15, Satz 1*] and [9, Section 7], where this bound was deduced
in different ways). Comparing with (6), we see that Corollary 3, and so
Theorem 1 all the more, give a better bound for the imaginary parts of the
zeros than Theorem A. Note that (14) cannot yield anything for the real
parts of the zeros since it does not contain the coefficient an&1 , but as
an&1 � �, one of the zeros will approach infinity.

Our method allows us to establish an L2 inequality for polynomials,
which may be of independent interest.

Theorem 2. Let _ be an m-distribution. Suppose that f and g are monic
polynomials of degree n and k, respectively. Then

��
&� | f (x)|2 d_(x)

��
&� | f (x) g(x)|2 d_(x)

� :
n

&=0

#&

#&+k
C&+k, & ,

where the numbers #& and C&+k, & are given by the orthogonal polynomials
with respect to d_(x) as in (4) and (7).

In Theorem 2, the roles of f and g may be interchanged. Doing so and
multiplying the resulting inequality with the previous one, we obtain the
following result.
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Corollary 4. Let _ be an m-distribution defining the norm (3). Suppose
that f and g are monic polynomials of degree n and k, respectively. Then

& fg&2�Mn, k(_) & f & } &g&

with a positive number Mn, k(_) which depends only on n, k, and _. In terms
of the quantities (4) and (7), that number may be expressed as

Mn, k(_)=_\ :
n

&=0

#&

#&+k
C&+k, &+\ :

k

+=0

#+

#++n
C++n, ++&

&1�2

.

Example. For d_(x)=e&x2
dx, the associated orthogonal polynomials

are the Hermite polynomials. With the constants given in (13), we find for
k=1 that

��
&� | f (x)|2 e&x 2

dx
��

&� | f (x)(x&`)|2 e&x 2
dx

�2(n+1)

for every monic polynomial f of degree n and all ` # C. When k>1, we can
always avoid the appearance of the numbers C&+k, & by iterating the
estimate for k=1 in an obvious way. In our example, we obtain that

��
&� | f (x)|2 e&x 2

dx
��

&� | f (x) g(x)|2 e&x2
dx

�2k(n+1) } } } (n+k)

for every pair of monic polynomials f and g of degree n and k, respectively.

2. LEMMAS

Let _ be an m-distribution and [,n]n # N0
be the sequence of monic

orthogonal polynomials with respect to d_(x), as introduced in the previous
section. Given a polynomial

|(z) := `
l

j=1

(z&`j)(z&!� j),

we denote by

,[|]
0 (z), ,[|]

1 (z), ..., ,[|]
n (z), ...

the monic orthogonal polynomials with respect to |(x) d_(x) and define

#[|]
n :=|

�

&�
(,[|]

n (x))2 |(x) d_(x) (n # N0).
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Connections between the two sequences [,n] and [,[|]
n ] have been studied

since a long time. In 1858, Christoffel expressed ,[|]
n by a determinant in terms

of ,n , ,n+1 , ..., ,n+2l (see [16, Section 2.5]). A more recent contribution
emphasizing the computational aspects is given in [11]. In our approach, we
shall need bounds for &,[|]

n & and #[|]
n . First we mention two useful observa-

tions, stating them as lemmas or convenient reference.

Lemma 1. Let �k be a monic divisor of the nth orthogonal polynomial ,n

with deg �k=k, and set | :=(,n ��k)2. Then ,[|]
k =�k .

Proof. It is known (e.g., [16, p. 39, Theorem 3.1.2]) that orthogonal
polynomials have the following extremal property. Among all monic poly-
nomials f of degree n, the orthogonal polynomial ,n is the only one which
minimizes & f &2.

If g is an arbitrary monic polynomial of degree k, then | g(x)|2 |(x) is
the square of the modulus of a monic polynomials of degree n evaluated at
x # R. Hence

|
�

&�
| g(x)|2 |(x) d_(x)�|

�

&�
(,n(x))2 d_(x)

=|
�

&�
(�k(x))2 |(x) d_(x).

Now the analogous extremal property for the orthogonal polynomials with
respect to |(x) d_(x) implies that �k=,[|]

k . K

Lemma 2. Let |(z)=>l
j=1 (z&`j)(z& �̀ j) with l�1, and let � be a

polynomial of degree n with real coefficients. Then there exists a polynomial
h of degree at most n with real coefficients so that |h has an expansion

|(z) h(z)= :
n+2l

&=0

a&,&(z)

with

:
n

&=0

a&,&(z)=�(z).

Proof. For arbitrary real numbers b0 , ..., bn , we consider the polynomial

g(z) :=|(z) :
n

&=0

b&,[|]
& (z)
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and expand it as

g(z)= :
n+2l

&=0

a&,&(z). (15)

The coefficients b0 , ..., bn can be expressed in terms of a0 , ..., an as follows:

#[|]
& b& =|

�

&�
g(x) ,[|]

& (x) d_(x)

= :
n+2l

+=0

a+ |
�

&�
,+(x) ,[|]

& (x) d_(x)

= :
&

+=0

a+ |
�

&�
,+(x) ,[|]

& (x) d_(x) (&=0, ..., n).

This shows that b0 , ..., bn can be chosen such that a0 , ..., an take prescribed
values. In particular, there exists a polynomial

h(z)= :
n

&=0

b&,[|]
& (z) (b0 , ..., bn # R)

so that g :=|h has the form (15) with �n
&=0 a&,&(z)=�(z). This completes

the proof. K

Lemma 3. Let |(z)=>l
j=1 (z&`j)(z& �̀ j) with l�1. Then

#n�&,[|]
n &2�#n Cn+l, n (n # N0) (16)

with & }&, #n , and Cn+l, n defined by (3), (4), and (7). These inequalities are
best possible.

Proof. The before-mentioned extremal property of orthogonal polyno-
mials shows immediately that the first inequality in (16) holds.

Now we turn to the second inequality. By Lemma 2 with n replaced by
n&1, there exists a polynomial h with real coefficients and degree at most
n&1 so that

g(z) :=|(z) h(z)= :
n+2l&1

&=0

a&,&(z) (17)

with

:
n&1

&=0

a&,&(z)=,[|]
n (z)&,n(z).
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Then

:
n&1

&=0

#&a2
&=&,[|]

n &,n&2. (18)

Moreover, since h is of degree at most n&1, we have

0=|
�

&�
h(x) ,[|]

n (x) |(x) d_(x)=|
�

&�
g(x) ,[|]

n (x) d_(x)

= :
n

&=0

a& |
�

&�
,&(x) ,[|]

n (x) d_(x),

and so

#2
na2

n =\ :
n&1

&=0

a& |
�

&�
,&(x) ,[|]

n (x) d_(x)+
2

=\ :
n&1

&=0

#&a2
& +

2

=&,[|]
n &,n &4. (19)

As (17) shows, g has at most n&1 real zeros of odd multiplicities. Hence
Theorem C implies that

#na2
n�(Cn+l, n&1) :

n&1

&=0

#&a2
& .

By (18) and (19), this is equivalent to

1
#n

&,[|]
n &,n &4�(Cn+l, n&1) &,[|]

n &,n&2,

which yields that

&,[|]
n &,n &2+#n�#n Cn+l, n .

Observing that the left-hand side is equal to &,[|]
n &2, we arrive at the

second inequality in (16).
It remains to show that inequalities (16) cannot be improved.
Let !1 , ..., !n+l be the zeros of ,n+l . According to the theory of

Gaussian quadrature formulae, there exist positive numbers *1 , ..., *n+l so
that the equation

|
�

&�
f (x) d_(x)= :

n+l

j=1

* j f (!j) (20)
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holds for all polynomials f up to degree 2n+2l&1. Now let

|(z) :=(z2+'2)l ('>0).

Keeping in mind that among all monic polynomials f of degree n, the poly-
nomial ,[|]

n is the only one which minimizes the integral

|
�

&�
| f (x)| 2 |(x) d_(x),

and noting that (,[|]
n (x))2,

(,[|]
n (x))2 |(x)&(,n+l(x))2 and (,n(x))2 |(x)&(,n+l(x))2

are polynomials of degrees not exceeding 2n+2l&1, we may use the
quadrature formula (20) to argue as follows:

&,[|]
n &2= :

n+l

j=1

*j (,[|]
n (!j))2

= :
n+l

j=1

*j
(,[|]

n (! j))2

|(!j)
|(!j)

�'&2l :
n+l

j=1

*j (,[|]
n (! j))2 |(!j)

='&2l :
n+l

j=1

*j[(,[|]
n (! j))2 |(!j)&(,n+l(!j))2]

='&2l |
�

&�
[(,[|]

n (x))2 |(x)&(,n+l(x))2] d_(x)

�'&2l |
�

&�
[(,n(x))2 |(x)&(,n+l(x))2] d_(x)

='&2l :
n+l

j=1

*j (,n(!j))2 |(!j)

�'&2l max
1� j�n+l

(!2
j +'2)l :

n+l

j=1

*j (,n(!j))2

= max
1� j�n+l \1+

!2
j

'2+
l

|
�

&�
(,n(x))2 d_(x)

= max
1� j�n+l \1+

!2
j

'2+
l

#n .
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The last term approaches #n as ' � �. This shows that, for each n # N0 ,
the two sides of the first inequality in (16) can be arbitrarily close. For
certain integers n even equality may occur. Of course, ,0(x)#,[|]

0 (x)#1,
and so equality occurs for n=0. Furthermore, if d_(x) and |(x) d_(x) are
symmetric with respect to the origin, then ,1(x)#,[|]

1 (x)#x, which gives
equality for n=1.

It is easy to see that equality can be attained in the second inequality in
(16). In fact, from (7) it is clear that there exists a monic divisor �n of ,n+l

with deg �n=n and

&�n&2=#nCn+l, n .

But by Lemma 1, �n=,[|]
n if | is taken as (,n+l ��n)2 which is an

admissible choice. This completes the proof. K

Remark. The proof of Lemma 3 reveals that, if in Theorem C the
constant Cm, k could be replaced by a smaller number, then the second
inequality in (16) could be improved accordingly. But (16) is best possible
as we have shown. Hence the constant Cm, k in Theorem C must be best
possible.

Lemma 4. Let |(z)=>l
j=1 (z&`j)(z& �̀ j) with l�1. Suppose that

dn+l(`j)�r�0 ( j=1, ..., l).

Then

#[|]
n �#n+l+&,[|]

n &2 r2l (n # N0). (21)

Proof. For r=0, the above-mentioned extremal property of orthogonal
polynomials, used for ,n+l , shows immediately that (21) holds.

Let us now suppose that r>0. We shall use again the Gaussian quad-
rature formula (20), which holds for all polynomials f up to degree
2n+2l&1. Keeping in mind that the nodes of (20) are the zeros of ,n+l

and that the coefficients are positive, and noting that (,[|]
n (x))2 and

(,[|]
n (x))2 |(x)&(,n+l(x))2

are polynomials of degrees not exceeding 2n+2l&1, we may proceed as
follows:
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&,[|]
n &2=|

�

&�
(,[|]

n (x))2 d_(x)

= :
n+l

j=1

*j (,[|]
n (!j))2

= :
n+l

j=1

*j
(,[|]

n (!j))2

|(!j)
|(!j)

�
1

(dn+l(`1) } } } dn+l(`l))2 :
n+l

j=1

*j (,[|]
n (! j))

2 |(!j)

�r&2l :
n+l

j=1

*j[(,[|]
n (! j))2 |(!j)&(,n+l(!j))2]

=r&2l |
�

&�
[(,[|]

n (x))2 |(x)&(,n+l(x))2] d_(x)

=r&2l(#[|]
n &#n+l).

This shows that (21) holds. K

Since the function K+, & as defined in (11) is monotonically increasing and
continuously differentiable, it has an inverse 4+, & :=K &1

+, & which is again
monotonically increasing and continuously differentiable. By a simple
calculation, we find that

- C+, & \x+
#+

#&C+, &+ if &
#+

#&C+, &
�x<

#+

#&C+, &

4+, &(x)={2 �#+x
#&

if
#+

#&C+, &
�x<

#+

#&
(22)

x+
#+

#&
if x�

#+

#&
.

Lemma 5. Let |(z)=>l
j=1 (z&`j)(z& �̀ j) with l�1. Suppose that

dn+l(`j)�r�0 ( j=1, ..., l).

Then

#[|]
n

- #n &,[|]
n &

�4n+l, n(r2l) (23)

with the function 4n+l, n given by (22).
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Proof. Introducing the function

.: t [
1

- #n
\#n+l

t
+r2lt+ (t>0),

we find with the help of Lemma 4 that

#[|]
n

- #n &,[|]
n &

�.(&,[|]
n &).

We shall show that

.(&,[|]
n &)�4n+l, n(r2l).

For r=0 the function . is decreasing, and so by Lemma 3,

.(&,[|]
n &)�.(- #n Cn+l, n )=4n+l, n(0).

For r{0 the function . is decreasing on (0, - #n+lr&l) and increasing
on (- #n+l r&l, +�). Hence by Lemma 3, if

(- #n , - #nCn+l, n )�(0, - #n+l r&l),

or equivalently,

r2l�
#n+l

#nCn+l, n
,

then

.(&,[|]
n &)�.(- #n Cn+l, n )=4n+l, n(r2l).

Again by Lemma 3, if

(- #n , - #n Cn+l, n )�(- #n+l r&l, +�),

or equivalently,

r2l�
#n+l

#n
,

then

.(&,[|]
n &)�.(- #n )=4n+l, n(r2l).
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It remains to establish an estimate for

#n+l

#nCn+l, n
<r2l<

#n+l

#n
. (24)

But for every r>0, the function . has an absolute minimum at - #n+l r&l.
Hence

.(&,[|]
n &)�.(- #n+l r&l).

The right-hand side is equal to 4n+l, n(r2l) if r2l is restricted by (24). This
completes the proof. K

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. In the situation of Theorem 1, set

l :=
n&k

2
+1,

and assume that

f (z)= :
n

&=0

a&,&(z)

has l pairs of conjugate zeros `j , �̀ j ( j=1, ..., l) satisfying

dm(`1)�dm(`2)� } } } �dm(`l)=: r, (25)

while dm(`)�r for any other zero ` of f. Setting

|(z) := `
l

j=1

(z&`j)(z& �̀ j),

we have a factorization

f (z)=|(z) g(z),

where g is a polynomial of degree n&2l, which may be represented as

g(z)= :
n&2l

&=0

b&,[|]
& (z).
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Obviously bn&2l=an , and so, using the orthogonality property, we find
that

an#[|]
n&2l =bn&2l |

�

&�
(,[|]

n&2l(x))2 |(x) d_(x)

=|
�

&�
g(x) ,[|]

n&2l(x) |(x) d_(x)

=|
�

&�
f (x) ,[|]

n&2l(x) d_(x)

= :
n&2l

&=0

a& |
�

&�
,&(x) ,[|]

n&2l(x) d_(x).

Estimating the right-hand side with the help of the Cauchy�Schwarz
inequality, we obtain

#[|]
n&2l �� :

n&2l

&=0

#& } a&

an }
2

}� :
n&2l

&=0

1
#& \|

�

&�
,&(x) ,[|]

n&2l(x) d_(x)+
2

=� :
n&2l

&=0

#& } a&

an }
2

} &,[|]
n&2l&.

Hence

#[|]
n&2l

- #n&2l &,[|]
n&2l &

�� :
n&2l

&=0

#&

#n&2l }
a&

an }
2

.

Employing Lemma 5 with n replaced by n&2l and keeping in mind that

n&l=m and n&2l=k&2,

we deduce that

4m, k&2(r2l)�� :
k&2

&=0

#&

#k&2 }
a&

an }
2

=: M (26)

with the function 4m, k&2 given by (22).
Now we argue as follows. If M<4m, k&2(0), or equivalently,

:
k&2

&=0

#&a2
&<

#2
m

#k&2Cm, k&2

a2
n ,
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then (26) cannot be satisfied with an r�0. This means that the assump-
tion (25) cannot hold. Hence f has at most l&1 pairs of conjugate zeros
including real double zeros. It has to be noted that a real zero ` of multi-
plicity 2}+1 counts as } pairs of conjugate zeros and one further zero
which all coalesce at !. Thus, if the zeros of f consist of * pairs of non-real
conjugate zeros, + distinct real zeros of multiplicities 2m1+1, ..., 2m++1,
and & distinct real zeros of multiplicities 2n1 , ..., 2n& , then

2(*+m1+ } } } +m++n1+ } } } +n&)++=n

and

*+m1+ } } } +m++n1+ } } } +n&�l&1.

This implies that

+�n&2l+2=k,

that is, f has at least k distinct real zeros of odd multiplicities.
If M�4m, k&2(0), then there exist numbers r�0 so that (26) is satisfied.

Recalling that the functions K+, & and 4+, & as defined in (11) and (22) are
both monotonically increasing and K+, & is the inverse of 4+, & , we deduce
from (26) that

r�(Km, k&2(M))1�(2l).

In view of (25), we see that at most l&1 pairs of conjugate zeros can lie
outside

[z # C : dm(z)�(Km, k&2(M))1�(2l)].

It remains to show that in the condition (12) the constant Cm, k&2 is best
possible. Assume to the contrary that it can be replaced by a number

C� m, k&2<Cm, k&2 .

Let �k&2 be a monic divisor of ,m with deg �k&2=k&2 such that

&�k&2&2=#k&2Cm, k&2 .

Setting | :=(,m��k&2)2, we know from Lemma 1 that �k&2=,[|]
k&2 .

Moreover, by Lemma 2 there exists a polynomial h of degree at most k&2
with real coefficients so that f :=|h has an expansion

f (z)=|(z) h(z)= :
n

&=0

a&,&(z) (27)
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with

:
k&2

&=0

a&,&(z)=�k&2(z).

Therefore

:
k&2

&=0

#&a2
&=&�k&2&2=#k&2Cm, k&2 . (28)

Furthermore, expanding h as

h(z)= :
k&2

j=0

bj,[|]
j (z)

and noting that bk&2=an , we find that

#[|]
k&2an =#[|]

k&2 bk&2=|
�

&�
h(x) ,[|]

k&2(x) |(x) d_(x)

=|
�

&�
f (x) ,[|]

k&2(x) d_(x)= :
k&2

&=0

a& |
�

&�
,&(x) ,[|]

k&2(x) d_(x)

=|
�

&�
(�k&2(x))2 d_(x)=&�k&2&2=#k&2 Cm, k&2 .

Finally,

#[|]
k&2 =|

�

&�
(,[|]

k&2(x))2 |(x) d_(x)=|
�

&�
(�k&2(x))2 |(x) d_(x)

=|
�

&�
(,m(x))2 d_(x)=#m .

Combining these equations with the preceding ones, we obtain

#man=#k&2 Cm, k&2 . (29)

Now (28) and (29) imply that

:
k&2

&=0

#&a2
&=

#2
m

#k&2Cm, k&2

a2
n .
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Consequently,

:
k&2

&=0

#&a2
&<

#2
m

#k&2C� m, k&2

a2
n .

Hence the sharpened form of (12) would be satisfied, but (27) shows that
f has at most k&2 distinct real zeros of odd multiplicities; a contradiction.
This completes the proof. K

Proof of Theorem 2. In the situation of Theorem 2, there exists a monic
polynomial | of degree 2k with real coefficients such that

|(x)=| g(x)|2 for x # R.

Again, we denote by [,[|]
n ]n # N0

the sequence of monic orthogonal polyno-
mials with respect to |(x) d_(x) and use all the previous notations. In
addition, for arbitrary complex polynomials . and �, we introduce the
inner product

(., �) :=|
�

&�
.(x) �(x) d_(x)

and the norm

&.&| :=\|
�

&�
|.(x)| 2 |(x) d_(x)+

1�2

.

The polynomial f may be expanded in two ways as

f (z)= :
n

+=0

b+ ,+(z)= :
n

&=0

b[|]
& ,[|]

& (z).

The coefficients [b+] and [b[|]
& ] are easily seen to be connected by the

following equations:

#+b+ =( f, ,+) = :
n

&=0

b[|]
& (,[|]

& , ,+)

= :
n

&=+

b[|]
& (,[|]

& , ,+) (+=0, ..., n). (30)

Introducing the vectors

x :=(- #[|]
0 b[|]

0 , ..., - #[|]
n b[|]

n )T,

y :=(- #0 b0 , ..., - #n bn)T,
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and the triangular matrix

C=\
c00 c01

c11

} } }
} } }
. . .

c0n

c1n

b
cnn
+

with entries

c+& :=
(,+ , ,[|]

& )

- #+#[|]
&

(0�+�&�n),

we may rewrite Eqs. (30) as

y=Cx. (31)

Denoting by | } | the Euclidean norm in Cn+1 and by ||C || the spectral
norm of the matrix C, we deduce from (31) that

|y|� ||C || } |x|. (32)

Moreover,

& f &= |y| and & f &|= |x|.

Hence (32) may be rewritten as

��
&� | f (x)|2 d_(x)

��
&� | f (x) g(x)|2 d_(x)

� ||C ||2. (33)

Since the spectral norm is bounded from above by the Frobenius norm
(e.g., [6, Section 2.3]), we have

||C || 2� :
0�+�&�n

c2
+&= :

n

&=0

:
&

+=0

c2
+& . (34)

The last sum may be expressed as

:
&

+=0

c2
+&= :

&

+=0

(,+ , ,[|]
& ) 2

#+#[|]
&

=
1

#[|]
&

&,[|]
& &2.
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Estimating the right-hand side with the help of Lemmas 3 and 4, we find
that

:
&

+=0

c2
+&�

#&

#&+k
C&+k, & . (35)

Now the conclusion of Theorem 2 is obtained by combining (33)�(35). K
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